Supervised Learning



Einleitung

Im Rahmen dieses aiMOOCs werden wir uns intensiv mit dem Thema Supervised Learning auseinandersetzen. Supervised Learning, oder überwachtes Lernen, ist ein zentraler Aspekt des maschinellen Lernens, bei dem Modelle anhand von vorgegebenen Eingabe-Ausgabe-Paaren trainiert werden. Dieser Lernprozess ermöglicht es Maschinen, aus Erfahrungen zu lernen und Vorhersagen oder Entscheidungen basierend auf neuen, unbekannten Daten zu treffen. Durch diesen Kurs erhältst Du ein tiefes Verständnis für die Mechanismen, die hinter Supervised Learning stehen, sowie praktische Erfahrungen durch interaktive Aufgaben.


Grundlagen des Supervised Learning


Was ist Supervised Learning?

Supervised Learning, oder überwachtes Lernen, ist ein Bereich des maschinellen Lernens, bei dem ein Algorithmus aus einem Trainingsset von Eingabe-Ausgabe-Paaren lernt. Die Eingabedaten kommen mit entsprechenden Zielwerten (oder Labels), und der Algorithmus lernt, diese Zuordnungen zu modellieren. Ziel ist es, aus diesen Beispielen zu lernen, um die Ausgabe für neue Eingaben vorhersagen zu können. Anwendungsbeispiele umfassen Bilderkennung, Sprachverarbeitung und Vorhersagemodelle.


Arten von Supervised Learning

Es gibt zwei Hauptarten von Aufgaben im Supervised Learning:

  1. Regression: Hier wird der Algorithmus trainiert, kontinuierliche Werte vorherzusagen, wie z.B. den Preis eines Hauses basierend auf verschiedenen Merkmalen wie Größe und Lage.
  1. Klassifikation: In diesen Aufgaben lernt der Algorithmus, die Eingabedaten in Kategorien einzuteilen, wie z.B. das Erkennen, ob eine E-Mail Spam ist oder nicht.


Trainingsprozess

Der Trainingsprozess im Supervised Learning umfasst die folgenden Schritte:

  1. Sammeln und Vorverarbeiten von Daten
  2. Auswahl eines geeigneten Algorithmus
  3. Training des Modells mit den Trainingsdaten
  4. Evaluierung des Modells mit Testdaten


Interaktive Aufgaben


Quiz: Teste Dein Wissen

Was ist die Hauptaufgabe von Supervised Learning? (Vorhersagen oder Entscheidungen basierend auf neuen, unbekannten Daten treffen) (!Modelle in einer unüberwachten Umgebung trainieren) (!Die Struktur in unmarkierten Daten finden) (!Daten ohne vorherige Kenntnis klassifizieren)

Welche der folgenden Aufgaben ist ein Beispiel für Klassifikation im Supervised Learning? (Erkennen, ob eine E-Mail Spam ist oder nicht) (!Den Preis eines Hauses vorhersagen) (!Die nächste Zahl in einer Sequenz von Zahlen vorhersagen) (!Die Gruppierung von Kunden basierend auf ihrem Kaufverhalten)

Welcher Schritt gehört nicht zum Trainingsprozess im Supervised Learning? (!Entwicklung einer neuen Theorie der Informatik) (Training des Modells mit den Trainingsdaten) (Sammeln und Vorverarbeiten von Daten) (Evaluierung des Modells mit Testdaten)





Memory

Regression Vorhersage kontinuierlicher Werte
Klassifikation Einteilung in Kategorien
Trainingsdaten Daten zum Lernen
Testdaten Daten zur Evaluierung
Algorithmus Regeln für das Lernen





Kreuzworträtsel

Regression Vorhersage kontinuierlicher Werte
Klassifikation Einteilung in Kategorien
Algorithmus Regeln für das Lernen
Evaluierung Überprüfung des Modells
Label Zielwert der Daten
Daten Grundlage für das Training
Modell Ergebnis des Lernprozesses
Lernen Prozess der Verbesserung




LearningApps

Lückentext

Vervollständige den Text.

Supervised Learning ist ein Bereich des

, bei dem Modelle

und

für unbekannte Daten treffen können. Es gibt zwei Hauptarten:

und

.



Offene Aufgaben

Leicht

  1. Forsche nach einem aktuellen Beispiel für Supervised Learning und beschreibe, wie es funktioniert.
  2. Erstelle eine einfache Klassifikationstabelle mit Beispielen für Spam und Nicht-Spam E-Mails.

Standard

  1. Entwickle ein kleines Programm, das einfache lineare Regression zur Vorhersage von Daten verwendet.
  2. Interviewe einen Experten im Bereich maschinelles Lernen und frage nach den Herausforderungen und Chancen von Supervised Learning.

Schwer

  1. Entwickle ein Konzept für ein Supervised Learning Modell, das helfen könnte, soziale Medien sicherer zu machen.
  2. Analysiere einen Datensatz deiner Wahl und bereite ihn für ein Supervised Learning Projekt vor.




Text bearbeiten Bild einfügen Video einbetten Interaktive Aufgaben erstellen



Lernkontrolle

  1. Erläutere, warum die Wahl des richtigen Algorithmus im Supervised Learning entscheidend ist.
  2. Diskutiere den Einfluss der Datenqualität auf die Leistung eines Supervised Learning Modells.
  3. Beschreibe, wie Supervised Learning in der Bilderkennung verwendet wird und welche Herausforderungen dabei bestehen.



OERs zum Thema


Links


Teilen - Diskussion - Bewerten





Schulfach+

Prüfungsliteratur 2026
Bundesland Bücher Kurzbeschreibung
Baden-Württemberg

Abitur

  1. Der zerbrochne Krug - Heinrich von Kleist
  2. Heimsuchung - Jenny Erpenbeck

Mittlere Reife

  1. Der Markisenmann - Jan Weiler oder Als die Welt uns gehörte - Liz Kessler
  2. Ein Schatten wie ein Leopard - Myron Levoy oder Pampa Blues - Rolf Lappert

Abitur Dorfrichter-Komödie über Wahrheit/Schuld; Roman über einen Ort und deutsche Geschichte. Mittlere Reife Wahllektüren (Roadtrip-Vater-Sohn / Jugendroman im NS-Kontext / Coming-of-age / Provinzroman).

Bayern

Abitur

  1. Der zerbrochne Krug - Heinrich von Kleist
  2. Heimsuchung - Jenny Erpenbeck

Abitur Lustspiel über Machtmissbrauch und Recht; Roman als Zeitschnitt deutscher Geschichte an einem Haus/Grundstück.

Berlin/Brandenburg

Abitur

  1. Der zerbrochne Krug - Heinrich von Kleist
  2. Woyzeck - Georg Büchner
  3. Der Biberpelz - Gerhart Hauptmann
  4. Heimsuchung - Jenny Erpenbeck

Abitur Gerichtskomödie; soziales Drama um Ausbeutung/Armut; Komödie/Satire um Diebstahl und Obrigkeit; Roman über Erinnerungsräume und Umbrüche.

Bremen

Abitur

  1. Nach Mitternacht - Irmgard Keun
  2. Mario und der Zauberer - Thomas Mann
  3. Emilia Galotti - Gotthold Ephraim Lessing oder Miss Sara Sampson - Gotthold Ephraim Lessing

Abitur Roman in der NS-Zeit (Alltag, Anpassung, Angst); Novelle über Verführung/Massenpsychologie; bürgerliche Trauerspiele (Moral, Macht, Stand).

Hamburg

Abitur

  1. Der zerbrochne Krug - Heinrich von Kleist
  2. Das kunstseidene Mädchen - Irmgard Keun

Abitur Justiz-/Machtkritik als Komödie; Großstadtroman der Weimarer Zeit (Rollenbilder, Aufstiegsträume, soziale Realität).

Hessen

Abitur

  1. Der zerbrochne Krug - Heinrich von Kleist
  2. Woyzeck - Georg Büchner
  3. Heimsuchung - Jenny Erpenbeck
  4. Der Prozess - Franz Kafka

Abitur Gerichtskomödie; Fragmentdrama über Gewalt/Entmenschlichung; Erinnerungsroman über deutsche Brüche; moderner Roman über Schuld, Macht und Bürokratie.

Niedersachsen

Abitur

  1. Der zerbrochene Krug - Heinrich von Kleist
  2. Das kunstseidene Mädchen - Irmgard Keun
  3. Die Marquise von O. - Heinrich von Kleist
  4. Über das Marionettentheater - Heinrich von Kleist

Abitur Schwerpunkt auf Drama/Roman sowie Kleist-Prosatext und Essay (Ehre, Gewalt, Unschuld; Ästhetik/„Anmut“).

Nordrhein-Westfalen

Abitur

  1. Der zerbrochne Krug - Heinrich von Kleist
  2. Heimsuchung - Jenny Erpenbeck

Abitur Komödie über Wahrheit und Autorität; Roman als literarische „Geschichtsschichtung“ an einem Ort.

Saarland

Abitur

  1. Heimsuchung - Jenny Erpenbeck
  2. Furor - Lutz Hübner und Sarah Nemitz
  3. Bahnwärter Thiel - Gerhart Hauptmann

Abitur Erinnerungsroman an einem Ort; zeitgenössisches Drama über Eskalation/Populismus; naturalistische Novelle (Pflicht/Überforderung/Abgrund).

Sachsen (berufliches Gymnasium)

Abitur

  1. Der zerbrochne Krug - Heinrich von Kleist
  2. Woyzeck - Georg Büchner
  3. Irrungen, Wirrungen - Theodor Fontane
  4. Der gute Mensch von Sezuan - Bertolt Brecht
  5. Heimsuchung - Jenny Erpenbeck
  6. Der Trafikant - Robert Seethaler

Abitur Mischung aus Klassiker-Drama, sozialem Drama, realistischem Roman, epischem Theater und Gegenwarts-/Erinnerungsroman; zusätzlich Coming-of-age im historischen Kontext.

Sachsen-Anhalt

Abitur

  1. (keine fest benannte landesweite Pflichtlektüre veröffentlicht; Themenfelder)

Abitur Schwerpunktsetzung über Themenfelder (u. a. Literatur um 1900; Sprache in politisch-gesellschaftlichen Kontexten), ohne feste Einzeltitel.

Schleswig-Holstein

Abitur

  1. Der zerbrochne Krug - Heinrich von Kleist
  2. Heimsuchung - Jenny Erpenbeck

Abitur Recht/Gerechtigkeit und historische Tiefenschichten eines Ortes – umgesetzt über Drama und Gegenwartsroman.

Thüringen

Abitur

  1. (keine fest benannte landesweite Pflichtlektüre veröffentlicht; Orientierung am gemeinsamen Aufgabenpool)

Abitur In der Praxis häufig Orientierung am gemeinsamen Aufgabenpool; landesweite Einzeltitel je nach Vorgabe/Handreichung nicht einheitlich ausgewiesen.

Mecklenburg-Vorpommern

Abitur

  1. (Quelle aktuell technisch nicht abrufbar; Beteiligung am gemeinsamen Aufgabenpool bekannt)

Abitur Land beteiligt sich am länderübergreifenden Aufgabenpool; konkrete, veröffentlichte Einzeltitel konnten hier nicht ausgelesen werden.

Rheinland-Pfalz

Abitur

  1. (keine landesweit einheitliche Pflichtlektüre; schulische Auswahl)

Abitur Keine landesweite Einheitsliste; Auswahl kann schul-/kursbezogen erfolgen.




aiMOOCs



aiMOOC Projekte












YouTube Music: THE MONKEY DANCE


Spotify: THE MONKEY DANCE


Apple Music: THE MONKEY DANCE

Amazon Music: THE MONKEY DANCE



The Monkey Dance SpreadShirtShop




The Monkey DanceaiMOOCs

  1. Trust Me It's True: #Verschwörungstheorie #FakeNews
  2. Gregor Samsa Is You: #Kafka #Verwandlung
  3. Who Owns Who: #Musk #Geld
  4. Lump: #Trump #Manipulation
  5. Filth Like You: #Konsum #Heuchelei
  6. Your Poverty Pisses Me Off: #SozialeUngerechtigkeit #Musk
  7. Hello I'm Pump: #Trump #Kapitalismus
  8. Monkey Dance Party: #Lebensfreude
  9. God Hates You Too: #Religionsfanatiker
  10. You You You: #Klimawandel #Klimaleugner
  11. Monkey Free: #Konformität #Macht #Kontrolle
  12. Pure Blood: #Rassismus
  13. Monkey World: #Chaos #Illusion #Manipulation
  14. Uh Uh Uh Poor You: #Kafka #BerichtAkademie #Doppelmoral
  15. The Monkey Dance Song: #Gesellschaftskritik
  16. Will You Be Mine: #Love
  17. Arbeitsheft
  18. And Thanks for Your Meat: #AntiFactoryFarming #AnimalRights #MeatIndustry


© The Monkey Dance on Spotify, YouTube, Amazon, MOOCit, Deezer, ...



Text bearbeiten Bild einfügen Video einbetten Interaktive Aufgaben erstellen

Teilen Facebook Twitter Google Mail an MOOCit Missbrauch melden Zertifikat beantragen


0.00
(0 Stimmen)











Children for a better world >> Förderung der AI Fair-Image Challenge

Fair-Image wird von CHILDREN JUGEND HILFT! gefördert und ist mit der deutschlandweiten AI Fair-Image Challenge SIEGERPROJEKT 2025. Alle Infos zur Challenge hier >>. Infos zum Camp25 gibt es hier. Wenn auch Ihr Euch ehrenamtlich engagiert und noch finanzielle Unterstützung für Eurer Projekt braucht, dann stellt gerne einen Antrag bei JUGEND HILFT.